367. Complex Fluorides. Part I. The Structural Chemistry of Some Complex Fluorides of Potassium, Rubidium, Cæsium, Ammonium, and Thallium.

By B. Cox and A. G. SHARPE.

The occurrence of the K_2SiF_6 (cubic), K_2GeF_6 (trigonal), and K_2MnF_6 (hexagonal) structures among complex fluorides of formula A_2BF_6 (where A is a large univalent cation) is discussed. When prepared at room temperature, K_2TiF_6 , Rb_2TiF_6 , Cs_2TiF_6 , $(NH_4)_2TiF_6$, and Tl_2TiF_6 are isomorphous with K_2GeF_6 . Hexagonal forms of K_2TiF_6 and Rb_2TiF_6 , and cubic forms of K_2TiF_6 , Rb_2TiF_6 , Cs_2TiF_6 , and Tl_2TiF_6 have been obtained by heating samples at 300–350°. Except in $(NH_4)_3FeF_6$, there is at present no evidence for hydrogen bonding as an important factor in complex fluorides containing the ammonium ion.

It was suggested (Sharpe, J., 1953, 197) that for complex fluorides of formula A_2BF_6 (where A = K, Rb, Cs, NH_4 , Tl) the two well-known structures of K_2SiF_6 and K_2GeF_6 are of nearly equal energy, and that their distribution is approximately a random one. We began a systematic search for further evidence in support of this hypothesis by examining the structures of the fluorotitanates; the recent publication of structural data for the complex fluorides K_2TiF_6 , K_2PdF_6 , Rb_2PdF_6 , Rb_2MnF_6 , Rb_2MnF_6 , and Cs_2MnF_6 , however, assists us considerably and prompts us to report our own work now and to summarise the present position in this field.

The K_2SiF_6 , K_2GeF_6 , and K_2MnF_6 structures may all be described (following Wells, "Structural Inorganic Chemistry," Oxford, 1945) as built up from close-packed layers of K and F atoms, with the Si, Ge, or Mn atoms in certain of the octahedral holes. In the cubic K_2SiF_6 structure, the layers are arranged in cubic close-packing (layer sequence ABC, ABC); in the ideal trigonal structure, from which K_2GeF_6 deviates slightly, the layers are arranged in hexagonal close-packing (sequence AB, AB); and in the hexagonal K_2MnF_6 structure (first described by Bode and Wendt, Z. anorg. Chem., 1952, 269, 165) the layers appear to be arranged in double hexagonal close-packing (sequence ABAC, ABAC). All available data for unit-cell dimensions of complex fluorides containing large univalent cations and silicon, germanium, titanium, manganese, nickel, palladium, or platinum are assembled in the Table; for details of the preparation of polymorphic forms by other authors, individual references should be consulted.

In the past, the deviations from ideal close-packing round the alkali-metal atoms in, e.g., K_2GeF_6 and Rb_2GeF_6 have probably attracted too much attention; but it should be pointed out that similar minor deviations also exist in K_2PtF_6 , K_2TiF_6 , and Cs_2PuCl_6 (Zachariasen, Acta Cryst., 1948, 1, 268). Furthermore, since most of the other complex fluorides (some of which are very unstable) have been subjected only to partial examination by powder methods, departures from ideal close-packing may be quite common. Nevertheless, the irregular distribution of the K_2SiF_6 , K_2GeF_6 , and K_2MnF_6 structures, and the existence of some of the complex fluorides in three modifications, suggest that the three structures are energetically equivalent and that their distribution is a random one.

The similarity in unit-cell dimensions between $(NH_4)_2 TiF_6$ and $Rb_2 TiF_6$ suggests that hydrogen bonding plays no significant part in determining the structure of the former compound [cf. Vincent and Hoard (*loc. cit.*), who made a similar observation on $(NH_4)_2 GeF_6$ and $Rb_2 GeF_6$]. Ammonium hexafluoroferrate (Pauling, J. Amer. Chem. Soc., 1924, 46, 2738; Minder, Z. Krist., 1937, 96, 15; Rice, Turner, and Brydon, Nature, 1952, 169, 749) remains the only ammonium complex fluoride in which the unit cell is very much smaller than that of the analogous rubidium compound. Since FeF_6^{3-} is the only complex fluoride ion of known structure in which magnetic properties unambiguously indicate the presence of "ionic" or weak covalent bonds (see Nyholm and Sharpe, J., 1952, 3579, for discussion) there may be a correlation between the weakness of the iron-fluorine bonds and the strength of the hydrogen bonding between fluorine and nitrogen. It is hoped to provide further evidence concerning the existence of such a correlation by the preparation of ammonium fluorocobaltate, $(NH_4)_3CoF_6$, and the determination of its unit-cell size and magnetic moment.

Unit-cell dimensions (in Å).					
SiF ₆ Trigonal Cubic	K_2 a = 8.13, 18.17 10	$\begin{array}{c} \operatorname{Rb}_2 \\ a = 8.45 ^{10} \end{array}$	Cs_2 a=8.87, ¹⁰ 8.89 ¹	$(\mathrm{NH}_4)_2$ $a = 5.76, c = 4.77^{-13}$ $a = 8.34, ^{10} 8.38^{-12}$	$a = \overline{\frac{\text{Tl}_2}{\text{s} \cdot 56}}, 10$
GeF ₆ Trigonal Hexagonal Cubic TiF.	a = 5.62, c = 4.65 a = 5.71, c = 9.27 —	$a = 5.82, c = 4.79^{8}$ $a = 5.94, c = 9.63^{6}$	$a = 8.99^{\circ}$	a = 5.85, c = 4.77	8.60 ¹¹
Trigonal	$a = 5.71$, $c = 4.65^{1, 13}$	a = 5.88, $c = 4.78$ ¹	$a = 6.15, c = 4.96^{1}$	a = 5.96, $c = 4.82$ ¹	a = 5.92,
Hexagonal Cubic	$a = 5.75, c = 9.46^{1}$ $a = 8.32^{1}$	$a = 5.91, c = 9.81^{-1}$ $a = 8.49^{-1}$	$a = 8.96^{1}$	_	$c = 4.84^{-1}$ $a = 8.46^{-1}$
MnF ₆ Trigonal Hexagonal Cubic	$a=5.71, c=4.65^{5}$ $a=5.70, c=9.35^{5}$ $a=8.28^{5}$	$a = 5.85, c = 9.50^{5}$ $a = 8.43^{5}$	a=8.92 ⁵		
Cubic	a=8.11 14			_	—
PdF ₆ Hexagonal Cubic	a = 5.75, c = 9.51	$a = 5.98, c = 9.70^{1}$ $a = 8.57^{4}$	a = 9.00, 49.012	_	
PtF ₆		7 00 100 1			

Trigonal... a=5.76, $c=4.64^{2,3}$ a=5.96, $c=4.83^{2}$ a=6.22, $c=5.01^{2}$

¹ Present work. ² Sharpe, J., 1953, 197. ³ Mellor and Stephenson, Austral. J. Sci. Res., 1951, **4**, A, 406. ⁴ Hoppe and Klemm, Z. anorg. Chem., 1952, **268**, 364. ⁵ Bode and Wendt, *ibid.*, **259**, 165. ⁶ Bode and Brockmann, *ibid.*, p. 173. ⁷ Hoard and Vincent, J. Amer. Chem. Soc., 1939, **61**, 2849. ⁸ Vincent and Hoard, *ibid.*, 1942, **64**, 1233. ⁹ Wyckoff and Müller, Amer. J. Sci., 1927, **13**, 347. ¹⁰ Ketelaar, Z. Krist., 1935, **92**, 155. ¹¹ Tabet, Gazzetta, 1933, **63**, 679. ¹² Bozorth, J. Amer. Chem. Soc., 1922, **44**, 1066. ¹³ Gossner and Kraus, Z. Krist., 1934, **88**, 223. ¹⁴ Klemm and Huss, Z. anorg. Chem., 1949, **258**, 221. ¹⁵ Siegel, Acta Cryst., 1952, **5**, 683.

Experimental.—Fluorotitanates were obtained from titanium dioxide, hydrofluoric acid, and metal fluorides. Titanium was determined as dioxide; thallium in *thallous fluorotitanate* was determined as chromate after precipitation of the titanium [Found, for the K salt: Ti, 20.0. Calc. for $K_2 TiF_6$: Ti, 20.0. Found, for the Rb salt: Ti, 14.5. Calc. for $Rb_2 TiF_6$: Ti, 14.4. Found, for the Cs salt: Ti, 11.3. Calc. for $Cs_2 TiF_6$: Ti, 11.2. Found, for the NH₄ salt: Ti, 24.1. Calc. for $(NH_4)_2 TiF_6$: Ti, 24.2. Found, for the Tl salt: Tl, 70.7; Ti, 8.4. Tl₂TiF₆ requires Tl, 71.7; Ti, 8.4%].

The existence of polymorphic forms was investigated by heating small samples at temperatures between 275° and 350° ; powder photographs of the residues were taken at room temperature. The potassium salt, after being heated at 350° for 24 hr., gave a powder pattern corresponding to a mixture of hexagonal and cubic forms. The structure of the rubidium salt was unchanged after 18 hr. at 275° ; after 24 hr. at 300° the powder pattern was that of a mixture of hexagonal and cubic forms. At 300° the cæsium salt remained trigonal, but heating it at 350° for 24 hr. resulted in a change to the cubic structure. The ammonium salt decomposed completely at 275° . Thallous fluorotitanate became cubic after 24 hr. at 350° , and was still cubic after six weeks at room temperature.

The sample of rubidium fluoropalladate used had been prepared at 150° (J., 1953, 197).

X-Ray powder photographs were taken with $\text{Cu-}K\alpha$ radiation; samples were filled into Pyrex capillaries, the "dry box" technique being used for Rb_2PdF_6 , and the capillaries were sealed off with warm picein wax.

We are indebted to the Department of Scientific and Industrial Research for a Maintenance Grant (to B. C.).

UNIVERSITY CHEMICAL LABORATORY, CAMBRIDGE

[Received, January 17th, 1953.]